Talk BIG with Tuple – Episode 2

Welcome back. In this episode of TBT, we have an interesting conversation with Mr Navin Manaswi, Senior Data Scientist from Xchanging PLC, a business processing and technology services provider headquartered at London. Mr Navin is based out of Malaysia. He shares his thoughts about the analytics industry and how Big Data will change how we process information.

Mr Navin is a graduate from IIT, kanpur and has been working in the field of analytics for about 8 years now. He has been involved with a lot of projects in the field of analytics from demand forecasting to twitter sentiment analysis. It was a privilege to discuss the nuances of the data analytics industry. We thank him and wish all the best for his future endeavors. Please find the interview below,

 

Me: A brief insight into your past and present work – how have you moved from kb to tb of knowledge?

N:  It has been an exciting journey so far. In this journey, I have been investing almost 50% time for research in nitty gritty of ML algorithms, mathematical models, integration with big data technologies like Hadoop, Spark, interactive data visualization, integration with various databases and strategy development for solving business problems. Rest of the time was spent in  understanding business domains, sourcing data, cleaning data, building and refining predictive models and building ML based intelligent dashboards.

 

Me: Industry watch – where do you think the leap of faith on big data will come from? (Marketing / Banking / others)

N: Leap of faith has been coming from almost all sectors. Marketing, e-Commerce, Telecom, Healthcare, IT services and supply chain management are apparently more strong  than others at present as these sectors have huge customer base and have many competitors. They have been trying anything and everything to delight and retain customers, to maximise revenue by data-driven upsell and cross-sell strategies, to understand trends & patterns and to make the best possible strategies  .  Every business entity is eventually going to adopt big data analytics to survive and prosper in the market.

 

Me: Market share – Data Analytics and Malaysia – what is the market expecting from this value adding department?

N: In Big Data Analytics Maturity Scape, Malaysian companies have adopted and moved ahead within the first stage known as Ad-hoc stage (experimental, proofs-of-concept, undefined processes, etc) but they still lag behind the companies from the  leading countries like Singapore, Australia and Hong Kong. Although the demand for data scientists, data engineers and architects has been growing exponentially,  the supply side may not be adequate.

MDeC, a government sponsored initiative to create a hi-tech business corridor in Malaysia, is quite aggressive on big data analytics and has been doing every bit to make Malaysia the hub of Big Data Analytics in Asia Pacific
Me: Machine Learning – will it override common sense?

N: Machine Learning is more scientific and reliable than the common sense. So, eventually Machine Learning, that is data- driven, is going to override common sense in industry. Machine Learning algorithms is all about pattern recognition, building predictive and prescriptive models and making automated intelligent systems based on mathematical and statistical models. On the other hand, common sense may not be effective in decision making processes due to fast changing world. For example : A strategy made a decade ago worked well. Does it mean that the strategy would always remain as effective as it was ? I think No.  In this fast changing world, your customer types, customer behavior and demands have been changing significantly so we need to build a data driven decision making process to sustain and thrive.

 

Me: Your roles specifically in Ayata, General Mills & Xchanging. The data science career.

N: I started my data science career from Ayata, a Data Analytics firm for Oil & Gas Exploration companies where my role is to build the predictive and prescriptive models. In General Mills, my role was to identify the business problems and relevant data sources, to prepare data so as to build ML based models and to share the result with stakeholders. I also imparted data science training to a dozen of data analysts in India and US. Xchanging offered me the opportunity with clients from various domains ranging from Telecom, insurance to managed services where I designed and implemented end to end data science solutions with a help of IT team.

 

Me: Back to the future – your vision of big data for the future.

N: Almost everyone is optimistic on big data analytics. Return on investment on data science is very high and perhaps, that is why every business entity and sub-entity want to leverage big data analytics – a combination of data science and big data technologies. Everyone wants to streamline business, minimise the wastage & cost ,maximise the revenue, profit and customer delight in the competitive world. This can happen only when we start automating the process and promote data-driven decision making process.

 

Me: Ingredients to look out for – your advices to the ventures in big data and analytics.

N: Stay bullish on big data analytics. You are certainly going to dramatically improve the operational and functional guidelines, business processing, automation and decision making processes with help of Big Data Analytics. Please be careful in building data science team and be proactive in helping them understand your business and business problems. Once it is done, be ready for the dramatic improvement in your business.
AAEAAQAAAAAAAAIaAAAAJGQyNDMyNDI5LTAxZmQtNGIzYS04YjY3LTc4MTlmMGJhZGNhNw Mr Navin Manaswi, Senior Data Scientist, Xchanging

LinkedIn Profile: https://my.linkedin.com/in/navin-manaswi-1a708b8

 

Advertisements

Talk BIG with Tuple

As the world of business starts to see potential in big data business, Tuple Technologies flags off their series of Talk BIG with Tuple – A series of interviews with people involved in the business of Big Data & the businesses who use Big Data for a better leverage over their competitors. TBT’s inaugural episode will feature Mr Asankhaya Sharma, R&D Director of SourceClear, a software security solutions company. Mr Sharma is a PhD. from NUS, Singapore and he did his graduation from NIT, Warangal in India. He has about 10 years of experience in various domains of computer science. Also, Mr Sharma has constantly been in the advisory role for many a startups. We got the chance to discuss with him on Big Data & Analytics, and how it is changing today’s industries and markets. Below is the transcribed version of the conversation,

Me: Thank you for taking the time to do this Asankhaya. Could you please tell us a bit about your professional journey?

A: Sure. I started my career with Microsoft as a Software Engineer in Hyderabad, India, after my graduation in computer science & engineering. During my Microsoft days I had a stint in the Microsoft Research Center at Bangalore for about a year where my inclination towards research grew. I enrolled for a PhD. program in NUS, Singapore in Computer Science. I have been in the role of a mentor for many startups both during my PhD and after receiving my doctorate. I am quite passionate about teaching and have given sessions in Singapore Institute of Technology (SIT). My present role is of a Director taking care of the R&D department at SourceClear.

Me: What is SourceClear?

A: Well, the way we build softwares has dramatically changed in the past few years. Any web application that is developed today has less than 10% of customized code or business logic. Most of the functionalities of the application reside in third party libraries which are mostly open source. Now, the vulnerabilities involved with such open source libraries is that, when a particular library which is popular gets attacked, a huge number of applications involving that library could be attacked. This is where SourceClear comes into picture. SourceClear builds tools for developers to use open source safely. The tools integrate into a developer’s workshop helping them to come up with better protection for their applications.

Me: How do you see the rise of data analytics in Singapore? Does the Singapore market value data and invest on data analytics companies?

A: I say data analytics is already present in some form in a majority of companies in Singapore. People are predicting an increase in the number of jobs in data analytics and data driven decision making over the next few years in Singapore. In fact, IBM has come up with a masters program in the NUS which has been running for the last couple of years and they are planning to start even a bachelors course from next year. As the consciousness on data collection for further analysis keeps increasing, technology joins hands alongside to make use of the analysis for making a better and smarter nation. Presently, the trend towards data analytics might not have much prevalence but, Singapore as a country is surely among the top in both valuing data and investing in them.

Me: There is a psychological barrier among businesses with respect to sharing data, even if it is bringing an incremental value to them. What do you think is the best way to address this issue?

A: In our line of business, we face this issue quite regularly. Most of the critical analysis on source codes of businesses needs to be done locally as the client is skeptical about any kind of cloud infrastructure. One of the main reasons why our platform is based on Spark is because we have service obligations with our clients and none of their data could reside in any third party service. So, we had to build everything on our own and not rely on any other service. The only way to break this barrier is by showing that you can actually create a value and maintain the levels of security to clients. It is a slow process but, it will create the necessary credibility towards your business.

Me: Being in the world of technology for more than a decade now, what do you think should be the approach of businesses in the big data spectrum?

A: I believe there are 2 ways in which the whole idea of big data could be approached with. One, provide solutions horizontally. It means to provide analytics across domains by processing a certain kind of data. The other is to provide solutions to a specific domain on a variety of data which is the vertical way. So, you provide one solution which fits irrespective of the domain as the product you have developed specializes in analysing that particular kind of data. Alternatively, you assume the presence of a certain kind of data and analyze how that will affect a particular industry. For example, cars in the future will be a lot more automated but, how does it impact the insurance industry? Figuring our questions like these will give your product a better visibility in the market.

Me: Your thoughts on the challenges that Big Data companies face. Also, your suggestions for companies entering the field of big data.

A: The real challenge lies in asking the right questions at the right time. Companies might have a huge amount of data and data scientists to analyze this data but, if the company does not invest on people with domain knowledge they would never ask the right set of questions which would make them unique. Take the example of marketing, if people of different domains do not come together to analyze the collected data, they would not know what questions to ask and how to make sense of the data.

My advice to the companies entering the big data domain is to find that niche thing which will make you stand apart. A solution that’s faster or economical is not enough. The solution must also see those unique patterns in the client’s data and help in making decisions. Ultimately, that is what all of this about. you are trying to make something done and whoever provides a more efficient way stands out.

Me: Well, that brings us to the end of the inaugural episode of Talk BIG with Tuple. Once again, we thank Mr Asankhaya Sharma for taking the time to share with us his views on Big Data and Analytics. Next week, we will discuss the trends of the analytics industry in Malaysia with a senior data scientist from a business processing and technology service providing company.

1c77db0

Asankhaya Sharma, Director – R&D, SourceClear

 

Welcome to Tuple

 

It’s a beautiful Monday morning in Singapore with people bustling in buses and MRT stations making their way to work. Somewhere in Bugis, the owner of a Sago shop (a F&B outlet specializing in a delicious Chinese desert) looks at her last week’s business reports and wonders, “I wish I had the power to know my customers’ liking even before they ordered…”. At the same moment, on the other side of the town, a mango seller is loading up his truck hoping to find the right customers where he could get more value for his specially imported mangoes.

As the owner of the Sago shop opens her shop’s Facebook page the mango seller is checking out the orders received for the day. Although the number of likes have gone up in the FB page, she is not aware how a sentiment analysis could be done on the people who have liked the page. Also, if only she knew that her customers are already talking about the delicious mango sago they had last night over social media, she could come out with an offer on the particular to attract more footfall.

Similarly, the mango seller takes note of the fruit shop and juice shop outlets that have ordered. He is worried about the excess stock which he might have to undersell. There is no one to suggest him that he should consider the Sago shop as a premium customer and deliver an exclusive batch of mangoes to increase his value proposition. The solution to these problems might not be of data but, analyzing the already available information and finding the value in it.

Ladies & gentlemen, the above story is based on true incidents happened over 3 years. Now, both the characters of the story are involved in a strong business relationship and till date serve the best Mango Sago in town. Such common business issues have made us wonder whether holding information and not seeing a pattern in it to improve business is innocence or sheer negligence.

As the amount of data from the Global IP traffic branches out to exabytes and zettabytes, so is their value. Companies gain an edge over their competitors solely due to data sourcing and cleaning. Companies employing analysts to make sense of their data are moving ahead aggressively. Soon, there will be a world where data would be the universal currency and businesses would transact with their knowledge stored as data.

At this juncture, Tuple Technologies would love to share the opinions of people from a variety of industries and markets on what they believe is the value for making sense of the so called Big Data. So, moving forward, we will interact with statisticians, data scientists and analytics teams of various multi national organisations. This will be purely to understand the supply side, i.e. the analysts, on how they see this industry’s growth and how each market is responding to this game changing business segment.

Alternatively, we shall discuss with C-level executives of a plethora of industries to identify what is that they are looking from the information collected on their customers, how they are leveraging that information to gain an upper hand over their competition. We hope that the blog will bring out adrenaline pumping, mind boggling revelations.

dmti-spatial-location-hub-analytics-big-data-analytics-visualization-2-638